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Mix-unmix Classifier: A Proposal for Solving 

Under-determined Models in Linear Spectral 

Unmixing 

 ‘…the number of bands must be more than the 

number of end-members…’ is perhaps the most 

ubiquitous statement in linear spectral unmixing. Most 

conventional linear spectral unmixing techniques fix the 

number of end-members on the dimensionality of the 

data, and none of them can derive multiple (2
+
) 

end-members from a single band. The Mix-unmix 

Classifier overcomes the two limitations.  

The Mix-unmix Classifier creates a processing 

environment that allows any pixel to be unmixed without 
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any sort of restrictions (e.g. minimum determinable 

fraction), impracticalities (e.g. negative fractions), or 

trade-offs (e.g. either positivity or unity sum) that may be 

associated with conventional unmixing techniques.  

The Mix-unmix Classifier gives not only the most 

probable DN (digital number) contributions of 

end-members but also, unlike conventional unmixing 

techniques, their most probable contributory DNs. The 

contributory DNs directly define for instance the 

phenological stages of the end-members.  

Theory of the classifier: As the term implies, the 

Mix-unmix Classifier consists of two branches, namely 

mixing and unming. The mixing branch entails 

development of a hypothetical mixed end-members 

image from the desired end-members’ spectra by linearly 

mixing the spectra at all possible percentages (depending 

on the mixture interval adopted) and in all possible DN 

combinations (depending on the ranges of the spectra). 

Unmixing involves determination of each real (raw) 

image pixel DN’s contributory end-members and their 

percentages by back propagating through the mixing 

branch using a pixel of the same DN in the hypothetical 

image as a proxy.  

As the mixture model is truly never known, in case a 

reference training image exists, the Mix-unmix Classifier 

after initially linearly unmixing a raw image, normalises 

the linearly-estimated percentages based on reference 

training percentages.  

Preliminary studies show that the Mix-unmix 

Classifier performs better than; Spectral Angle Mapper, 

Binary Encoding classifier, and Maximum Likelihood 

classifier (hard classifiers), and IDRISI Kilimanjaro 

Probability Guided Option linear spectral unmixing 

technique.  
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